Difference between revisions of "FCT 1993"

From OPENRESEARCH fixed Wiki
Jump to navigation Jump to search
(modified through wikirestore by orapi)
(modified through wikirestore by orapi)
Line 1: Line 1:
 
{{Event
 
{{Event
 +
|has general chair=Zoltan Esik
 +
|has program chair=L. Babai, S.L. Bloom, L. Budach
 +
|has Proceedings DOI=https://doi.org/10.1007/3-540-57163-9
 +
|has Proceedings Bibliography=https://link.springer.com/book/10.1007%2F3-540-57163-9
 
|Acronym=FCT 1993
 
|Acronym=FCT 1993
|Title=9th Fundamentals of Computation Theory
+
|End date=1993/08/27
 +
|Series =FCT
 +
|Type  =Symposium
 +
|Country=HU
 +
|State  =HU/CS
 +
|City  =HU/CS/Szeged
 
|Ordinal=9
 
|Ordinal=9
|Series=FCT
 
|Type=Symposium
 
 
|Start date=1993/08/23
 
|Start date=1993/08/23
|End date=1993/08/27
+
|Title  =9th Fundamentals of Computation Theory
|City=Szeged
 
|Country=Hungary
 
|has general chair=Zoltan Esik
 
|has program chair=L. Babai, S.L. Bloom, L. Budach
 
 
|Accepted papers=40
 
|Accepted papers=40
|has Proceedings DOI=https://doi.org/10.1007/3-540-57163-9
+
|DblpConferenceId=fct/fct93}}
|has Proceedings Bibliography=https://link.springer.com/book/10.1007%2F3-540-57163-9
 
|DblpConferenceId=fct/fct93
 
|State=HU/CS}}
 
 
The 9th Fundamentals of Computation Theory (FCT) 1993
 
The 9th Fundamentals of Computation Theory (FCT) 1993
  

Revision as of 20:18, 3 November 2021


Event Rating

median worst
Pain2.svg Pain7.svg

List of all ratings can be found at FCT 1993/rating

FCT 1993
9th Fundamentals of Computation Theory
Ordinal 9
Event in series FCT
Dates 1993/08/23 (iCal) - 1993/08/27
Location
Location: HU/CS/Szeged, HU/CS, HU
Loading map...

Committees
General chairs: Zoltan Esik
PC chairs: L. Babai, S.L. Bloom, L. Budach
Table of Contents

The 9th Fundamentals of Computation Theory (FCT) 1993

Topics

  • Semantics and logical concepts in the theory of computing and formal specification
  • Automata and formal languages
  • Computational geometry, algorithmic aspects of algebra and algebraic geometry, cryptography
  • Complexity (sequential, parallel, distributed computing, structure, lower bounds, complexity of analytical problems, general concepts)
  • Algorithms (efficient, probabilistic, parallel, sequential, distributed)
  • Counting and combinatorics in connection with mathematical computer science