Difference between revisions of "FCT 1993"

From OPENRESEARCH fixed Wiki
Jump to navigation Jump to search
(modified through wikirestore by Th)
 
(modified through wikirestore by orapi)
 
(5 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
|has Proceedings DOI=https://doi.org/10.1007/3-540-57163-9
 
|has Proceedings DOI=https://doi.org/10.1007/3-540-57163-9
 
|has Proceedings Bibliography=https://link.springer.com/book/10.1007%2F3-540-57163-9
 
|has Proceedings Bibliography=https://link.springer.com/book/10.1007%2F3-540-57163-9
|DblpConferenceId=fct/fct93
 
 
|Acronym=FCT 1993
 
|Acronym=FCT 1993
|End date=1993/08/27
+
|End date=1993-08-27
 
|Series =FCT
 
|Series =FCT
 
|Type  =Symposium
 
|Type  =Symposium
Line 12: Line 11:
 
|State  =HU/CS
 
|State  =HU/CS
 
|City  =HU/CS/Szeged
 
|City  =HU/CS/Szeged
 +
|Year  =1993
 
|Ordinal=9
 
|Ordinal=9
|Start date=1993/08/23
+
|Start date=1993-08-23
 
|Title  =9th Fundamentals of Computation Theory
 
|Title  =9th Fundamentals of Computation Theory
|Accepted papers=40}}
+
|Accepted papers=40
 +
|DblpConferenceId=fct/fct93
 +
}}
 
The 9th Fundamentals of Computation Theory (FCT) 1993
 
The 9th Fundamentals of Computation Theory (FCT) 1993
  

Latest revision as of 03:26, 6 December 2021


Event Rating

median worst
Pain2.svg Pain7.svg

List of all ratings can be found at FCT 1993/rating

FCT 1993
9th Fundamentals of Computation Theory
Ordinal 9
Event in series FCT
Dates 1993-08-23 (iCal) - 1993-08-27
Location
Location: HU/CS/Szeged, HU/CS, HU
Loading map...

Committees
General chairs: Zoltan Esik
PC chairs: L. Babai, S.L. Bloom, L. Budach
Table of Contents

The 9th Fundamentals of Computation Theory (FCT) 1993

Topics

  • Semantics and logical concepts in the theory of computing and formal specification
  • Automata and formal languages
  • Computational geometry, algorithmic aspects of algebra and algebraic geometry, cryptography
  • Complexity (sequential, parallel, distributed computing, structure, lower bounds, complexity of analytical problems, general concepts)
  • Algorithms (efficient, probabilistic, parallel, sequential, distributed)
  • Counting and combinatorics in connection with mathematical computer science