Difference between revisions of "SOFTENG 2021"
(modified through wikirestore by Th) |
(modified through wikirestore by orapi) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Event | {{Event | ||
− | |||
− | |||
− | |||
− | |||
|Superevent=NexComm 2021 Congress | |Superevent=NexComm 2021 Congress | ||
− | |||
− | |||
|Submission deadline=2021/01/19 | |Submission deadline=2021/01/19 | ||
+ | |Acronym=SOFTENG 2021 | ||
+ | |End date=2021-04-22 | ||
+ | |Type =Conference | ||
+ | |Country=PT | ||
+ | |State =PT/13 | ||
+ | |City =PT/13/Porto | ||
+ | |Year =2021 | ||
|Homepage=https://www.iaria.org/conferences2021/SOFTENG21.html | |Homepage=https://www.iaria.org/conferences2021/SOFTENG21.html | ||
− | | | + | |Ordinal=7 |
− | | | + | |Start date=2021-04-18 |
− | | | + | |Title =The Seventh International Conference on Advances and Trends in Software Engineering |
+ | }} | ||
INVITATION: | INVITATION: | ||
Latest revision as of 02:39, 6 December 2021
Event Rating
median | worst |
---|---|
List of all ratings can be found at SOFTENG 2021/rating
SOFTENG 2021 | |
---|---|
The Seventh International Conference on Advances and Trends in Software Engineering
| |
Ordinal | 7 |
Subevent of | NexComm 2021 Congress |
Dates | 2021-04-18 (iCal) - 2021-04-22 |
Homepage: | https://www.iaria.org/conferences2021/SOFTENG21.html |
Location | |
Location: | PT/13/Porto, PT/13, PT |
Important dates | |
Submissions: | 2021/01/19 |
Table of Contents | |
INVITATION:
=====
Please consider to contribute to and/or forward to the appropriate groups the following opportunity to submit and publish original scientific results to:
- SOFTENG 2021, The Seventh International Conference on Advances and Trends in Software Engineering
SOFTENG 2021 is scheduled to be April 18 - 22, 2021 in Porto, Portugal under the NexComm 2021 umbrella.
The submission deadline is January 19, 2021.
Authors of selected papers will be invited to submit extended article versions to one of the IARIA Journals: https://www.iariajournals.org
=====
======== SOFTENG 2021 | Call for Papers =========
CALL FOR PAPERS, TUTORIALS, PANELS
SOFTENG 2021, The Seventh International Conference on Advances and
Trends in Software Engineering
General page: https://www.iaria.org/conferences2021/SOFTENG21.html
Submission page: https://www.iaria.org/conferences2021/SubmitSOFTENG21.html
Event schedule: April 18 - 22, 2021
Contributions: - regular papers [in the proceedings, digital library] - short papers (work in progress) [in the proceedings, digital library] - ideas: two pages [in the proceedings, digital library] - extended abstracts: two pages [in the proceedings, digital library] - posters: two pages [in the proceedings, digital library] - posters: slide only [slide-deck posted at www.iaria.org] - presentations: slide only [slide-deck posted at www.iaria.org] - demos: two pages [posted at www.iaria.org]
Submission deadline: January 19, 2021
Extended versions of selected papers will be published in IARIA Journals: https://www.iariajournals.org Print proceedings will be available via Curran Associates, Inc.: https://www.proceedings.com/9769.html Articles will be archived in the free access ThinkMind Digital Library: https://www.thinkmind.org
The topics suggested by the conference can be discussed in term of concepts, state of the art, research, standards, implementations, running experiments, applications, and industrial case studies. Authors are invited to submit complete unpublished papers, which are not under review in any other conference or journal in the following, but not limited to, topic areas.
All tracks are open to both research and industry contributions, in terms of Regular papers, Posters, Work in progress, Technical/marketing/business presentations, Demos, Tutorials, and Panels.
Before submission, please check and comply with the editorial rules: https://www.iaria.org/editorialrules.html
SOFTENG 2021 Topics (for topics and submission details: see CfP on the site)
Call for Papers: https://www.iaria.org/conferences2021/CfPSOFTENG21.html
================================================
SOFTENG 2021 Tracks (topics and submission details: see CfP on the site)
Software requirements for smart environments and smart devices/systems Design with software energy efficiency in mind; Software for portable devices; Synchronization constraints in smart cities systems; Combining multiple representation models; Sustainability design and apps for smart devices; Dealing with small-size screens; Software handling service recovery; Smart big data analytics as a service for smart systems; Design patterns for socially-aware computing on portable, wearable and implantable devices; Local/remote computation balance based on computation heat on wearable and implantable devices; Multithreading software for real-time scheduling smartly-equipped citizens; Software for fine grained access control with extended permissions and inheritable roles; Driving behavior prediction apps using multi-sensory data on a smartphone; Monitoring sentiment/citizens paths via open source via mobile apps; Cognitive apps for real-time mobile devices/systems; Apps for sensing human intention via self-adaptive systems; Test suites for real-time man-in-the-middle smart systems; Apps exploiting social context in personalized web-tasking applications; Testing large-scale software smart systems; Dedicated apps for smart cyber-physical systems; Prioritizing software requirements for smart environments; Software development for scaling mechanisms in smart mobile environments
Software requirements Fundamentals on software engineering requirements; Informal and formal representation of software requirements; Languages, schemes, patterns, tools for gathering software requirements; Tracking implementation for specific requirements; Functional and non-functional requirements; Requirements for ambient systems software; Requirements for body networks software; Requirements for smart devices and applications; Requirements for wearable/implantable software; Requirements for embedded software; Requirements for adaptive software/systems; Uncertainty specification in software requirements; Requirements for software dedicated to Internet of Things; Special requirements for data centers and cloud applications; Requirements for mobile software; Tools for requirements gathering; Requirements tracking tools; Tools for requirements conflict detection
Software designing and production Methodologies and tools for software design and deployment; Agile development; Model-driven software development and DSL design; Software design for interactive applications; Software design for web-driven services; Combining classical and Agile software development methods; Empirical software engineering methods; Specific methods for dedicated software; Formal models and methods; Parallel programming; Visual tools; Empirical distribution parameters; Package management systems; Crowdsourcing software development; Model checking specifications; Software product lines; Tools and platforms for software development and deployment; Code generation environments; Specification and implementation of patterns/antipatterns
Software reuse Software reuse approaches; Pros and cons on software reuse; Software reuse failures and lessons learned; Automation and high level abstraction in software reuse; Reusable components; Third-party software and component reuse; Software reuse metrics; Reuse patterns; Software reuse candidates (specifications, designs, tests cases, data, prototypes, plans, documentation, frameworks, and templates); Online reuse aspects; Weak and strong reuse; Testing and validating reuse-based software; Duplication and reuse; Code clones; Detecting and measuring similarity in code clones; Open areas for research in software reuse
Software/hardware interfaces General hardware/software modeling; Hardware/software interface codesign; Configurable and parametrized abstract interface architectures; Multi-processor system on chip interfaces; Interoperable hardware/software interfaces; Interface-based design methodology; Abstract models for concurrent hardware/software design; Interfaces for embedded software; Interfaces for ambient software; Interfaces for software in mobile/smart devices; Control flow; Parallel processing interfaces; Language translation modeling; Hardware/software partitioning
Agile software organization Agile software organization structure; Agile teams and roles; Generalizing agile specialists; System integration in agile structures; Agile analysis and design; Scalable agile frameworks; Performance management in agile organizations; Metrics for agile software organization; Business models and agile origination; Strategy and guidance for agile software organization; Tools and guidance for agile-oriented business control
Software sustainability Long lasting software; Environmental impact and economic balance; Modeling software product sustainability; Factors affecting software sustainability; Techniques for measuring sustainability; Formal and informal methods for software sustainability; Software sustainability and non-functional requirements; Software sustainability maturity model; Sustainable open source; Sustainability and reliability, (self-)adaptability, maintainability, context-awareness, agility; Software sustainability for green IT; Energy consumption and e-waste from computers during software upgrades; Governance models; Software sustainability and sustainable human behaviors; Operational risks, health and safety
Software testing and validation Program analysis and software verification; Model-based testing; Testing system composition/orchestration; Data flow testing; Debugging and validation; Discovering vulnerabilities; Defects localization; Defects and failures in software libraries; Testing and run-time analysis based on verification technology; Testing evolving software; Testing embedded applications; Testing citizen-oriented software; Testing game software; Testing apps and on-line software; Testing web-based software; Testing mobile software; Testing software for smart devices; Testing software for wearable services/devices; Testing APIs; Testing software-intensive systems; Malpractice process models; Tools and methodologies for testing real-time software; Testing software performance; Testing for malware presence; Automatic testing methodologies; Software testing certification; Code validation; Metrics for software quality prediction
Maintenance and life-cycle management Software rejuvenation; Software termination; Software duplication, redundancy; Software versions and configuration control; Software evolution; Conformance and traceability; Automated refactoring validation; Verification techniques; Software certification; Managing software versions; Maintenance over cross-platforms; Maintaining evolutionary code; Validation of software configuration changes; Software patching metrics; Software evolution quality metrics; Removing unintentional implementations/features; Software visualization tools; Tasks-oriented maintenance; Updates dependency control; Maintenance for processing chains; Maintenance of clouds-based platforms; Maintenance of embedded software; Maintenance of automated tests; Maintenance of open-sources; Maintenance for legacy systems; Maintenance based on empirical evidence; Feature-to-code tracking and maintaining; Maintenance of functional and non-functional features; Maintaining user-priority features; Costs of maintenance efforts
Software reliability, robustness, safety Metrics and measurements, estimation, prediction of quality/reliability; Software reliability modeling; Automatic repair; Safety critical systems; Software defect prediction models; Software reliability testing; Reliability, availability, and safety of software systems; Risk-based testing; Validation and verification; Vulnerability analysis; Software dependability; Fault tolerance, survivability, and resilience of software systems; Bug fixing; Systems (hardware + software) reliability engineering; Services reliability engineering; Open source software reliability engineering; Safety-critical systems; Collision analysis to prevent hazards; Safety, assurance, certification; Supporting tools and automation; Industry use cases and best practices; Empirical studies and benchmarks
Software security Security anomaly detection; Detecting software sabotage; Runtime dependability; Threats for software libraries; Data analytics for security verification; Internet threats and countermeasures; Open systems dependability; Trusted component reuse; Security and safety; Trusted software; Detecting code clones in malware; Authentication schemes and software; Trustworthiness in Cloud environments; Communication integrity in critical embedded systems; Latent security vulnerabilities
Challenges for dedicated software, platforms, and tools Enterprise application integration; Platforms and tools for agile software; Platforms an tools for special software; Lessons learned on domain-oriented software; eHealth software; Mobile applications; Software for smart devices; Software for mobile devices; Assistive software; Remote sensing software; Touch-user interfaces; Middleware software; Social networks software; Video-game software; Emerging interfaces; User-intensive web applications; Avionic software; Real-time software; Embedded software; Simulation software; Automotive software
SOFTENG 2021 Committee: https://www.iaria.org/conferences2021/ComSOFTENG21.html
Publicity Chairs Lorena Parra, Universitat Politecnica de Valencia, Spain Jose Luis García, Universitat Politecnica de Valencia, Spain